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CONNECTION BETWEEN THE LATTICE BOLTZMANN EQUATION AND THE BEAM

SCHEME

KUN XU* AND LI-SHI LUO t

Abstract. In this papcr we analyze and compare the lattice Boltzmann equation with the beam scheme

in details. We notice the similarity and differences between the lattice Boltzmann equation and the beam

scheme. We show that the accuracy of the lattice Boltzmann equation is indeed second order in space. We

discuss the advantages and limitations of lattice Boltzmann equation and the beam scheme. Based on our

analysis, we propose an improved multi-dimensional beam scheme.

Key words, kinetic theory, hydrodynamics, lattice Boltzmann mcthod, beam scheme, Euler and Navier-

Stokes equations.

Subject classification. Fluid Mechanics

1. Introduction. The method of lattice Boltzmann equation (LBE) [1, 2, 3, 4, 5] is a gas kinetics

based method invented to solve mainly hydrodynamic systems described by the Navier-Stokes equations.

The lattice Boltzmann equation is fully discrete in time and phase space. It is a drastically simplified version

of the continuous Boltzmann equation [6, 7]. The lattice Boltzmann method has a number of computational

advantages: simplicity of programming, intrinsic parallelism of the algorithm and data structure, and con-

sistency of thermodynamics. These advantages of the lattice Boltzmann method are duc to the following

facts: first of all, the Boltzmann equation has a linear convective term; second, the velocity space is re-

duced to a set of very small number of discrete velocities in the lattice Boltzmann formalism; third, model

potential or interaction, and free energies can bc directly implemented into the lattice Boltzmann models

[8]. It can bc shown that the lattice Boltzmann equation recovers the near incompressible Navier-Stokes

equations [9]. There is numerical cvidence that the latticc Boltzmann method can indeed faithfully simulate

the incompressible Navier-Stokes equations with high accuracy [10, 11, 12, 13].

Historically, the lattice Boltzmann equation evolves from its predecessor, the lattice gas automata [14,

15]. Recently it has been shown that the lattice Boltzmann equation is a special finite diffcrence form of

the continuous Boltzmann equation [6, 7]. This result has set the mathematical foundation of the lattice

Boltzmann equation in a rigorous footing [6, 7]. It also provides insights to relate the lattice Boltzmann

equation to other existing gas kinetics based schemes [16, 17, 18]. In this paper, we discuss the mathematical

connections between the lattice Boltzmann equation and the beam scheme [16].

This paper is organized as follows. In Sec. 2 we briefly discuss the BGK Boltzmann equation and its

hydrodynamics. In Sec. 3, we describe the derivation of the lattice Boltzmann equation by discretizing

the continuous BGK Boltzmann equation, and the derivation of hydrodynamic equations from the lattice

Boltzmann equation via Chapman-Enskog procedure. We also analyze the validity and accuracy of lattice

Boltzmann method. In Sec. 4 we describe the beam scheme and connect the beam scheme with the lattice
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Boltzmann method. In Sec. 5 we compare the beam scheme and the lattice Boltzmann method. In Section 6,

we propose an improved beam scheme and conclude the paper.

2. BGK Boltzmann Equation and its hydrodynamics. We begin with the Bhatnagar-Gross-

Krook (BGK) [19] Boltzmann equation, which is a model kinetic equation widely studied [20, 21]:

(2.1) cgtf + _.Vf = _l (f _ g),
T

where the single particle (mass) distribution function f = f(x, _, t) is a time-dependent function of particle

coordinate x and velocity _, v is the relaxation time which characterizes typical collision processes, and g is

the local Maxwellian equilibrium distribution function defined by

(2.2) g(p, u, O)= p(21rO)-D/2 exp [--(¢- u)2/20] ,

where D is the dimension of the velocity space _; p, u, and 0 = kBT/m are the mass density, macroscopic

velocity, and normalized temperature per unit mass, respectively; kB, T, and m are the Boltzmann constant,

temperature, and particle mass, respectively. The mass density p, velocity u, and the temperature 0 (or

internal energy density) are the hydrodynamic moments of f or g:

(2.3a)

(2.3b)

(2.3c) Dpe = (_ - u)2f = 5 (_ - _')_g"

At equilibrium f = g, the Boltzmann equation (2.1) becomes

(2.4) Dtg = O,

where

(2.5) Dt =- Ot + _.V.

The Euler equations can be easily derived from the above equation by evaluating its hydrodynamic moments:

(2.6a)

(2.65)

(2.6c)

Otp + V. (pu) = o,

0, 0u) + v(puu + pc) = o,

lpU2U =)o,
where _ = (D + 2)/2 is the ratio of specific heats of an ideal gas, uu denotes a second rank tensor uiuj, and

u s = u • u. It should bc noted that _ is related to the number of the degree of freedom of a particle, which

is D in the case of mono-atomic ideal gases. The momentum equation (2.6b) can also be rewritten as the

following

(2.7)

where

pOtu + pu-Vu = -VP,

(2.8) P = p0



is the equation of state for ideal gas.

The Chapman-Enskog analysis [20, 21] gives the first order solution

(2.9)

Therefore,

(2.10)

f(1) = -_'Dtg.

f = f(0) T f(1) __ g _ TDtg.

With the above solution of f, the BGK equation, Eq. (2.1), becomes

(2.11) Dtg- rD2g = - I f (1) •
T

The moments of the above equation leads to the Navier-Stokes equations

(2.12a) cOtp + V.(pu) = O,

(2.12b) 0t(pu) + V(p u + po) = -vn('),

where [7(1) is the first order shear-stress tensor

n j)= fde eiejf(1) = --TpO(O, uj + Ojui).(2.13)

It is obvious that the kinematic viscosity in Eq. (2.12b) is

(2.14) _ = r0.

3. Lattice Boltzmann equation and its hydrodynamics.

3.1. Lattice Boltzmann equation. The continuous BGK equation, Eq. (2.1), admits a formal integral

solution given by [20]:

(3.1) f(x + _5t, _, t ÷ 5_) = c -_'/x f(x, _, t) + le-_'/XA _o _' et'/_ g(x + _t', _, t + t')
dt' .

The lattice (BGK) Boltzmann equation can be derived by discretizing the above integral solution in both

time and phase space [6, 7]. The obtained lattice Boltzmann equation is

(3.2) f_(x -!- e_5,, t + 5,) -- f_(x, t) _- -l[f_(x, t) -- f(eq) (x, t)],
T

where v -- A/5,, fc,(x, t) =- W_f(x, ea, t), f(eq) is the discretized equilibrium distribution function, and

{e_ } and {Wa } are the discrete velocity set and associated weight coefficients, respectively. The discretized

equilibrium distribution function f(eq), and both the discrete velocities {e_ } and their corresponding weight

coefficients {Wa} depend upon the particular lattice space chosen. For the sake of explicitness, we use the

nine-bit lattice Boltzmann equation in two-dimensional space in the following discussion. In this case, we

have W_ = 2_Oexp(e_/20)w_, where

4/9,
(3.3) w_= 1/9,

1/36,

a=O

a = 1, 2, 3, 4

a = 5, 6, 7, 8,



(0, 0), = 0(3.4) ea= (cos 4)a, sin _b_)e, a_0,

andq_ = (a-1)Tr/2 for a= 1--4, and (a-5)Tr/2+Tr/4 for a = 5 8, ande= 6_/6t. (Here0= c2/3 for

the nine-bit model has been substituted to obtain a uniform lattice structure [6, 7].) Then, the equilibrium

distribution function of the 9-bit model is:

(3.5) /(oq) w-P [l+3(e_.u) 9(eo.u? 3_ _]= c_ + 2ca 2c 2 J "

The hydrodynamic moments of the lattice Boltzmann equation are given by

D O 1 1

Note that the quadrature used in the above equations must be exact for these hydrodynamic moments in

order to preserve the conservation laws [6, 7].

The algorithm for the lattice Boltzmann equation consists of two steps: collision and advection on a

lattice space as prescribed by Eq. (3.2). The collision is accomplished as follows: first of all the hydrodynamic

moments are computed at each lattice site {x} according to Eqs. (3.6), the equilibrium f(eq) can be calculated

then according to Eq. (3.5). The distribution )ca is updated on each site by using the relaxation scheme:

fo(x, t + 6t) = f_(x, t) - [f_(x, t) - f(eq)(x, t)]/T. After collision, fa advects to the next site (x + east)

according to the velocity eo, i.e., fc_(x + e_St, t + 6t) = f_(x, t + 6t). It is obvious that the algorithm

is simple, cxplicit, and intrinsically parallel. All the calculations are local and data communications are

uniform to the nearest neighboring sites.

3.2. Chapman-Enskog analysis. The hydrodynamics of the lattice Boltzmann equation can be de-

rived via Chapman-Enskog analysis [20, 21] with the following expansion [9, 22]:

(3.7a) Sa(x + ea6t, t + 6t) = Z 6t _,n. ,nut S_x, t),
n=O

oo

(3.7b) f'_ = Z enY(n) '
n=0

where

(3.8) n_ -- (0t + e,.V),

and e = 6t. The normal solution of the lattice Boltzmann equation, up to the first order in expansion

parameter _ (which is the Knudsen number), from Chapman-Enskog analysis is

(3.9a) f(0) = f(eq),

(3.9b) S (1) = -rn'tf(°).

With the above solution, we can, accordingly, derive the following governing equations for the lattice Boltz-

mann equation through Chapman-Enskog procedure:

(3.10a) D_.f_(_q) = 0,

1
(3.10b) n, ¢(0)_ _(2'r - 1)6,D;2f (eq) -lf O)

(3.6a)

(3.6b)

(3.6c)



Thehydrodynamicequations,theEulerandtheNavier-Stokesequations,canbeobtainedby takingthe
momentsof theabovegoverningequations.

3.3. Hydrodynamicsof lattice Boltzmannequation.Themomentsofthezerothorderequation,
Eq.(3.10a),in thediscretemomentumspace[definedbyEqs.(3.6)]leadto theEulerequations

(3.11a) Oep + V.(pu) = O,

(3.11b) Ot(pu) + V(pO + puu) = O,

(3.11c) ot ( Dpo + _pu2) + V'("/pOu) =0,

Note that Eq. (3.11c) differs from its counterpart, Eq. (2.6c), derived from the continuous BCK Boltzmann

equation, Eq. (2.1). The energy flux lpu2u due to the advection of fluid is missing. The omission of the

1pu2uenergy flux term _ can only be justified if

pu 3 << _fpOu,

Because 0 = _ = c2/3 in the case of the nine-bit model, where Cs is the sound speed,where u - Ilull.
therefore

M << V/_ = vf(D + 2),

where M - u/cs is the Mach number. From above analysis, it becomes clear that the lattice Boltzmann

equation is only valid for low Mach number flow, or in the incompressible limit. This is consistent with the

low velocity expansion made to obtain the equilibrium distribution function f(eq).

The moments of the first order equation, Eq. (3.10b), give the Navier-Stokes equations similar to

Eqs. (2.12) with the viscosity given by

1)
where 0 = c2//3 and c = g_/_it. The Navier-Stokes equation from lattice BGK Boltzmann equation can

be easily derived by noticing the similarity of Eq. (3.10b) and Eq. (2.11), provided that the quadrature to

evaluate the moments

(3.13) / dqeme -¢2 = _ w,_¢'_
t_

is exact for m < 5, because m = 1 from the first order moment, m = 2 from f(¢q), and m = 2 from the

term (e_ 'V)2f_ (eq) in Eq. (3.10b). To obtain the two-dimensional nine-bit lattice Boltzmann equation, the

third order Gaussian quadrature is the optimal choice to the aforementioned goal of evaluating the necessary

hydrodynamic moments exactly [6, 7].

In the above derivation of the Navier-Stokes equation, and the governing equation Eq. (3.10b) in par-

ticular, one can immediately realized that the accuracy of the LBE method is of second order, as previously

speculated [23], because all the second order terms in the Taylor expansion are included in Eq. (3.10b), and

the truncation error is of third order. The term -gtO/2 in the viscosity is the manifest of the inclusion of

second order terms (in space). The simplicity of this proof for the second order accuracy of the lattice BGK

Boltzmann method is due the simphcity of the collision operator in LBE method.



4. BeamScheme.Thebeamscheme[16]is a finitevolume,gas-kineticbasedschemeto solvehy-
drodynamicequations.In thebeamscheme,hydrodynamicvariables(massdensityp, momentum pu, and

temperature 0) are given at a particular time in each volume cell. The equilibrium distribution function

constructed from the hydrodynamic variables can be approximated by a finite number of "beams," or a

distribution of finite number of discrete velocities. Consider in an one dimensional case in which we want to

use three discrete velocities in the velocity space, then the equilibrium distribution 9 is approximated in _
coordinate with three Kronick delta functions:

gx = P (27r0) -1/2 exp{-((x - u_)2120}

(4.1) _ p[a06(_s - us) + a16(_s - ux + A_) + a2_(_ - u_ - _)].

We can calculate the unknowns (a0, al, a2, and Au_) from the following moment constraints:

(4.2a)
J

(4.2b) puz = fd_x _sgx

(4.2c) pO =/d_: (_x - ux)2 gs

(4.2d) 3p02 -- fd_x (_x - ux)4gx.

The equations for the unknowns are:

ao +al +a2 = 1,

(al - a2)----0,

(al+a2) Au_=O,

(al+a2)Au_=302.

And the results are

2
(4.3a) a0 3 '

1
(4.3b) aa = a2 = _,

(4.3c) Au_ = V/-_.

Therefore, there are three "beams" or "particles" in the beam scheme with the velocity u_ - v/_, uz, and

u_ + v/-_. Note that the weight coefficients of these three particles, a0, al and a2, are identical to those

derived in the lattice Boltzmann equation by using Gaussian quadrature. Thus, in the situation of us = 0,

the beam scheme is similar to the lattice Boltzmann equation with the three discrete velocity of -c, 0, and

c in one-dimensional case, where we have substitute 30 = c 2 for isothermal fluids.

However, the difference between the lattice Boltzmann equation and the beam scheme outweighs the

similarity between the two, for the reason that the lattice Boltzmann equation is a finite difference scheme,

while the beam scheme is a finite volume one. In the beam scheme, the "particles" move in and out each

cell according to the velocity of these "particles." After this advection process, the hydrodynamic quantities

(p, u, and 0) are obtained through an averaging process in each volume cell. The "particles" with different

velocity arc mixed first to compute the averaged hydrodynamic quantities in the cell, and redistributed



throughthecalculationillustratedpreviously.Thismixing(or averaging)processinevitablyintroduces
artificialdissipation.Andthisdissipationis implicit,just asfor anyotherupwindfinitevolumescheme.
Therefore,thetransportcoefficients,suchasviscosity,cannotbeexplicitlyderivedin thebeamscheme,and
thusthebeamschemecannotsolvetheNavier-Stokesequationsquantitatively.

5. Lattice Boltzmann Method and Beam Scheme. We now compare the pros and cons of the

lattice Boltzmann equation and the beam scheme. Theoretically, the lattice Boltzmann equation accurately

approximates the incompressible Navier-Stokes equations [9]. The method is simple, explicit, and intrinsically

parallel. The transport coefficients can be obtained explicitly, and therefore there is no numerical dissipation

in the simulations by using the lattice Boltzmann method. In addition, the lattice Boltzmann method is a

intrinsically multidimensional scheme. The disadvantages of the lattice Boltzmann method are the obvious

consequences of the low Mach number expansion and the regular lattice structure. Because of the low

Mach number expansion, the lattice Boltzmann method is limited to incompressible flows and therefore is

not applicable to compressible flows and shocks. In addition, the regular lattice structure of the lattice

Boltzmann method is a direct consequence of constant temperature, i.e., _ = c2/3 =constant in the case of

the nine-bit lattice Boltzmann model. This, we suspect, is partly the reason for the failures of the thermal

lattice Boltzmann models. Furthermore, because the equilibrium distribution function is not a Maxwellian,

the H-theorem for the continuous Boltzmann equation no longer holds for the lattice Boltzmann equation.

That is to say, the f(eq) is an attractor of the lattice Boltzmann equation, but it may not be the equilibrium

in the sense of the H-theorem.

In contrast to the low Mach number expansion used in the lattice Boltzmann equation, the Maxwellian

equilibrium distribution is expanded around the averaged macroscopic velocity in each volume cell. The

discrete velocity set depends on the averaged velocity and temperature within each cell, and therefore it

varies from cell to cell. The beam scheme leads to correct hydrodynamic equations, including the energy

equation. Consequently, the beam scheme can well capture thermal and compressible effects in flows. Thus

it is suitable for simulations of high-speed (hypersonic) flows, and it is also more stable for high Reynolds

number flows. The beam scheme is a finite volume, upwind shock capturing scheme. Its natural shortcomings,

like any other such schemes, are that it has intrinsic and implicit numerical dissipations due to the mixing

of particles in each volume cell, and the transport coefficients cannot be obtained explicitly. Therefore it

cannot solve the Navier-Stokes equations quantitatively.

6. Conclusion. As we have shown in this paper, while the lattice Boltzmann equation and the beam

scheme shares the same philosophy in the discretization of velocity space (in one dimensional space) - all

the conserved quantities are preserved exactly in the process of discretization, their distinctive difference lies

in their equilibrium distribution function. The lattice Boltzmann equation expands the equilibrium at u = 0

and uses a polynomial (of u) to approximate the Maxwellian, therefore the method is limited to apply only

to the near incompressible Navier-Stokes equations. The beam scheme obtains particle beams around the

average velocity of the Maxwellian distribution, thus avoiding the low Mach number expansion in the lattice

Boltzmann method. Naturally, the beam scheme is suitable for shock capturing in the compressible flows.

Moreover, the lattice Boltzmann equation evolves on a lattice structure, information advects exactly from

one node to another thus there is no mixing process involved. In contrast, the particle beams in the beam

scheme move from one volume cell to another, and the mixing among the beams occurs in the construction

of local Maxwellian equilibrium. Because of the uncontrollable numerical dissipation in the beam scheme

caused by the mixing, it is difficult to use the scheme to simulate hydrodynamics quantitatively.

It is interesting to compare the lattice Boltzmann method and the beam scheme in multi-dimensional



space. In two-dimensional space, the beam scheme only uses five velocities [16], i.e., one central beam with

the bulk velocity (ux, u_), and two side beams each in x- and y-directions, (u_ =t=x/_, uy), and (ux, uy=hv/_).

Based on the analysis of the lattice Boltzmann equation [9, 14, 15, 22], it is well understood that such a

discrete velocity set inevitably introduces anisotropy into the hydrodynamic equations resulted from the

scheme. To removed the anisotropy, one can use the nine velocity set derived in the lattice Boltzmann

equation. That is, the diagonal velocities, (ux + v/-_, uy + x/_), must be included in the two-dimensional

beam scheme. With this modification, the volume cell in two-dimensional space become an octagon, instead

of a square. This is equivalent to use the product of two one-dimensional Maxwellian, each approximated

by three "beams." This is feasible because Maxwellian is factorizable in the Cartesian, or other, coordinate

system.
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